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Application of fractal geometry to atomization process
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Abstract

Fractal characteristics of the droplet size distribution arising in an atomization process have been studied in this paper. The fractal
dimensions were measured experimentally. Simulations of droplet splitting have been carried out and the corresponding fractal dimensions
have been obtained numerically. Based on the results obtained from experiments and simulations, a mathematical model of droplets splitting
at uniformly distributed probability has been established. © 2000 Elsevier Science S.A. All rights reserved.
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1. Introduction

Fractal objects have been introduced into the analysis of
a wide class of phenomena in physics and natural science
[1]. In the field of chemical engineering, fractal geometry
has been applied to describe transport, reaction, adsorption,
turbulence [2], aggregation [2,3], and so on.

Kaye [4] pointed out that there exist structural and tex-
tural fractal dimensions in some natural phenomena. The
structural fractal dimensionDs is defined to represent the
overall topography or structure of fractals, while the textural
fractal dimensionDt is used to describe the texture or fine
structure of fractals.

The process of atomization is widely utilized in apply-
ing agricultural chemicals to crops, paint spraying, spray
drying, food processing, cooling of nuclear cores, combus-
tion, gasification and many other fields. Many empirical and
semi-empirical models have been established to describe at-
omization processes. Due to the complexity of the atomiza-
tion process, it is difficult to clearly describe the mechanism
and also impossible to combine all the influencing factors,
such as equipment dimensions, size and geometry of nozzle,
physical properties of the dispersed phase and the contin-
uous phase and operating mode, into one model. The two
concepts, structural and textural dimensions, are found to be
very useful in the description of atomization processes.

In this paper, the structural dimensions and textural di-
mensions were measured experimentally using a Malvern
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Laser Particle Sizer. The fractal dimensions were also
calculated by numerical simulation. A mathematical deriva-
tion based on the experiment and numerical simulations is
presented.

2. Experimental measurement of fractal dimensions

In order to measure the fractal dimensions, experiments
have been carried out using the air–water system, with the
flow chart shown in Fig. 1. The diameter of the central pas-
sage of the nozzle used was 3 mm, while that of the annular
space was 23 mm. The rake angle of the nozzle was 10◦.
Liquid-phase water passed through the central passage at a
flow rate of 0.21 m3/h, while the continuous-phase air flow
rate through the annular space is 115 N m3/h. Malvern Laser
Particle Sizer of Type 3600 [5] was utilized to measure the
droplet distribution. Measurement range of the selected lens
with a focal length of 1000 mm was 19.4–1879.9mm. The
measurement was carried out at the horizontal plane at a
distance of 685 mm [6] from the vent of the atomizer. The
measurement was repeated 50 times at the same operating
mode.

A plot of the droplet number against the scaledp on a
log–log plot yields bothDs andDt in two different scaling
ranges. These two types of dimensions are shown in Fig. 2.

Fig. 2 can also be written in an analytical equation in the
form

Dt = 0.11Ds + 0.21 (1)
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Fig. 1. Schematic diagram of the experimental apparatus.

which is a simple linear equation. The mean values of two
types of fractal dimensions are expressed in Eqs. (2) and (3),
respectively:

Dt = 0.57± 0.08 (2)

Ds = 3.21± 0.67 (3)

3. Numerical simulations

The Weber numbers of droplets throughout the spray
regime have been estimated from the experiments. The max-
imum Weber number is less that 21.5. A majority of droplets
in the spray had Weber numbers which were lower that the
critical value of 12, indicating that these droplets lie in the
vibrational break-up regime [7]. Meanwhile, the rest of the
droplets had Weber numbers between 12 and 21.5 falling in
the bag break-up regime. In the vibrational break-up regime,
one droplet splits into two sub-droplets with the mass ratio of
sub-droplet to its mother droplet being around 0.5, while in
the bag break-up regime, one droplet splits into several rela-
tively bigger sub-droplets and many smaller sub-droplets. In
the case of bag break-up, we can regard the mother droplet
as severaldummydroplets.

Therefore, we represent a particle of the atomization pro-
cess with two parameters, namely its age and splitting proba-
bility. Any two droplets with the same growth ages are called
even-aged droplets and any two droplets with different ages

Fig. 2. Relationship betweenDt and Ds.

are called odd-aged ones. A new concept namedgeneration
is introduced to denote the age of a droplet. A generation is
defined to be the time gap during which a droplet may split
at most into two sub-droplets, where the mass ratio of the
sub-droplet to the mother droplet satisfies the same proba-
bility distribution. The growth of the first four generations
of a droplet is sketched in Fig. 3 in which the splitting prob-
ability is 0.5. Therefore, we can say that the growth of a
droplet has the property of statistic self-similarity.

To simulate the size distribution of an atomization pro-
cess, we assume that (1) the co-effect of break-up and ag-
gregation can be considered briefly as the effect of break-up;
(2) a droplet can split at most into two sub-droplets, whose
splitting probability is denoted byp; and (3) if a droplet
splits into two sub-droplets, then the mass ratio, denoted by
x, of a sub-droplet to the mother droplet is a random vari-
able, andx satisfies the probabilistic distribution with the
same densityf(x) in the open unit interval (0, 1). It is obvi-
ous that the density functionf(x) is symmetric aboutx=0.5,
i.e. f(x)=f(1−x).

Let S(g, dp) denote the set of droplets of thegth gener-
ation whose diameter is not less thandp, and |S(g, dp)| the
potential of the setS(g, dp). Following Mandelbrot’s point
[8], if S(g, d0) is a fractal set, then its distribution takes the
form of

Fig. 3. Growth tree of a droplet:g=0, 1, 2, 3, 4;p=0.5.
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|S(g, dp)| = A(g)d−D
p (4)

in which A(g) is independent of resolutiondp which is not
less thand0.

To prove that |S(g, dp)| is a fractal set, simulations in
the case whereinf(x) is the density of uniform distribution
are performed. A so-called Richardson–Mandelbrot plot [9]
which is a plot of log(|S(g, dp)|) againstdp on a log–log plot
yields a structural fractal dimension and a textural fractal
dimension at two different scaling ranges, respectively.

The growth of 10 primary droplets has been simulated
which has been repeated 50 times. The pseudo-random num-
bers are generated using the pseudo-random number gen-
erator of MATLAB 5.0, and all these simulations can be
reduplicated.

We have calculated the structural fractal dimensions and
the textural fractal dimensions of even-aged droplets with
the generation numberg from 19 to 30 whose step size is 1
and the splitting probabilityp from 0.22 to 0.38 whose step
size is 0.02.

Plots ofDt of the even-aged droplets againstp show per-
fect linear relationships, all of whose correlation coefficients
are greater than 0.99. The fitted multiple regression equation
is obtained as follows:

Dt = (0.322g − 4.964)p − 0.045g + 0.612 (5)

The relative errors between fitted values and simulated
values are mostly less than 10%. From Eq. (5), it can be seen
thatDt increases with increasingg andp, which also shows
that the fine structure becomes more and more obvious and
moves to the smaller scale range with development of the
jet flow and increase in the splitting probability.

Likewise, the fitted multiple regression equation ofDs
againstg andp is obtained as follows:

Ds = (0.250g − 7.836)p − 0.104g + 6.264 (6)

The relative errors between fitted values and simulated
values are mostly less than 9%. From Eq. (6), it can be seen
thatDs decreases with increasingg andp, which also shows
that the fine structure moves to the smaller scale range with
development of the jet flow and increase in the splitting
probability. Moreover, the average of allDs’s gives

Ds = 3.21± 0.19 (7)

which can also be acceptable.

4. Mathematical model

Consider the setS(g, d0), given an arbitrary elements of
S(g, 0) with the diameterdg. If ssplits into two sub-droplets
denoted bys1 ands2, there exist three cases:
1. If dg<d0, thensdoes not belong toS(g, d0), and so also

s1 ands2.

Fig. 4. Sketch for Case 2.

2. If d0 ≤ dg <
3
√

2d0, then s∈S(g, d0), and there is at
least one sub-droplet which does not belong toS(g+1,
d0). If si /∈S(g+1, d0) (i=1 andi=2), it follows that
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0/d3

g ], then both the
sub-droplets do not belong toS(g+1, d0), as shown in
Fig. 4.

3. If 3
√

2d0 ≤ dg, thens∈S(g, d0), and there is at the most
one sub-droplet which does not belong toS(g+1, d0).
If si∈S(g+1, d0) (i=1 andi=2), it follows that
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Hence, if x ∈ [d3
0/d3

g , 1 − (d3
0/d3

g)], then both the
sub-droplets belong toS(g+1, d0), as shown in Fig. 5.

It is obvious that the number of sub-droplets generated by
any arbitrary mother droplet is also a random variable. If we
denote this random variable asζ , then the possible value of
ζ is 0, 1, and 2, as shown in Figs. 4 and 5. Therefore, the
expectation ofζ in the second case given above is calculated
to be

E(ζ ) = 1 − p +
∫ 1−(d3

0/d3
g )

0
f (x) dx +

∫ 1

d3
0/d3

g

f (x) dx
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∫ 1−(d3
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g )

0
f (x) dx (a)

Fig. 5. Sketch for Case 3.
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and in the third case, it is calculated to be

E(ζ ) = 1 − p +
∫ d3

0/d3
g

0
f (x) dx +

∫ 1−(d3
0/d3

g )

d3
0/d3

g

2f (x) dx

+
∫ 1

1−(d3
0/d3

g )

f (x) dx = 1 − p + 2
∫ 1−(d3

0/d3
g )

0
f (x) dx

(b)

According to Eqs. (a) and (b), it follows that, for anys in
S(g, d0) with a diameterdp, the expectation ofζ is

E(ζ ) = 1 − p + 2
∫ 1−(d3

0/d3
p)

0
f (x) dx (8)

For thegth generation droplets, the number of the given
s in the scale interval [dp, dp+ddp] is −d|S(g, dp)|. Hence,
there are−E(ζ )·d|S(g, dp)| droplets generated by |S(g, dp)|
mother droplets belonging to |S(g+1, dp)|. Therefore, it fol-
lows that

|S(g + 1, d0)| =
∫ ∞

d0

− E(ζ )
d|S(g, dp)|

ddp

ddp (9)

Substitution of Eq. (8) into Eq. (9) gives

|S(g + 1, d0)| = (1 − p)|S(g, d0)| − 2
∫ ∞

d0

×
[∫ 1−(d3

0/d3
p)

0
f (x) dx

]
d|S(g, dp)|

ddp

ddp

(10)

where the identity |S(g, ∞)|≡0 is used.
If f(x) is the density of a uniformly distributed function in

the open unit interval (0, 1), according to the normalizing
condition, we have∫ 1

0
f (x) dx = p

where f(x) is a constant in (0, 1). It follows thatf(x)=p,
wherex∈(0, 1). Therefore, we obtain

|S(g + 1, d0)| = (1 + p)|S(g, d0)|

+2p

∫ ∞

d0

d3
0

d3
p

d|S(g, dp)|
ddp

ddp (11)

Eq. (11) is the recursion formula of |S(g, dp)| about the
generation numberg. Both simulations of physical model
and experimental measurements verify that the droplets’ set
S(g, dp) is a fractal set, namely, Eq. (4) which is correct for
those generation numbers which are large enough. Substi-
tution of Eq. (4) into Eq. (11) gives

|S(g + 1, d0)| =
(

1 + p − 2Dp

3 + D

)
A(g)d−D

0

=
(

1 + p − 2Dp

3 + D

)
|S(g, d0)| (12)

Let 1+p−(2Dp/(3+D))=A(g+1); then, we have

|S(g + 1, d0)| = A(g + 1)d−D
0 (13)

which has the same form as Eq. (4).

5. Discussion

5.1. Critical fractal dimension and its application

From Eq. (12), one can see that there exists a critical
fractal dimensionDc=3 for the case of uniformly distributed
probability.

If D>Dc, then |S(g+1, dp)|<|S(g, dp)| and the number of
droplets decreases with increasingg in the corresponding
scaling range.

If D=Dc, then |S(g+1, dp)|=|S(g, dp)| and the number
of droplets is constant over differentg in the corresponding
scaling range.

If D<Dc, then |S(g+1, dp)|>|S(g, dp)| and the number of
droplets increases with increasingg in the corresponding
scaling range.

Let M(g, dp) denote the total mass of the setS(g, dp).
Consider the case thatD>Dc. We have

M(g, dp) =
∫

s∈S(g,dp)

− ρ

(
1

6
πd3

p

)
d|S(g, dp)|

=
∫ ∞

dp

ρ

(
1

6
πd3

p

)
A(g)Dd−D−1

p ddp

= ρπ

6

D

D − 3
A(g)d3−D

p (14)

which shows that the mass distribution also has fractal char-
acteristics if the fractal dimension is greater than the critical
fractal dimensionDc.

5.2. Structural fractal dimensions of odd-aged droplets

According to the mathematical model, all different-
generation droplets have the same structural fractal dimen-
sion if the generation number is large enough. Eq. (12) can
also be expressed in the form

|S(g + n, dp)| =
(

1 + p − 2Dp

3 + D

)n

|S(g, dp)| (15)

Simulations make it possible to calculate the fractal
dimension of odd-aged droplets according to Eq. (15). The
computed fractal dimensionsD are listed in Table 1. It is
obvious that these fractal dimensions are structural fractal
dimensions and the meanDs is coincidental with Eq. (3).
These computations ofDs also test and verify the derivation
results of the mathematical model.

Now, consider the structural fractal dimensions expressed
in formulae (3) and (7), and in Table 1. We find that they are
all coincidental with each other. We also find that the textural
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Table 1
Structural fractal dimensions of odd-aged droplets

Splitting probability Mean

0.20 0.22 0.24 0.26 0.28 0.3 0.32 0.34

Resolution 0.20 0.20 0.15 0.15 0.15 0.10 0.25 0.10 0.15
Fractal dimension 3.31 3.69 3.19 3.43 3.57 2.79 3.00 3.23 3.28
Standard deviation 0.38 0.50 0.28 0.33 0.34 0.22 0.22 0.25 0.27

fractal dimension shown in formula (2) is not contradictory
to that in formula (5).

5.3. Approximation of overall droplets distribution

Consider the overall atomization process. In order to ob-
tain the droplet size distribution, we assume that all the sets
S(g, dp) with any arbitrary generation numberg are fractal
sets, i.e. Eq. (4) holds. For some proper fixeddp, summation
of all |S(g, dp)| aboutg from 1 to someg gives

g∑
i=1

|S(i, dp)| =
g∑

i=1

A(i)d−D
p (16)

Since allA(i) is independent ofdp andD is a constant ac-
cording to the hypothesis, we can draw a conclusion that the
overall distribution approximately takes the form

N(dp) = Ad−D
p (17)

where N(dp) = ∑g

i=1|S(i, dp)| and A = ∑g

i=1A(i).
Hence, we can take it for granted that, in a proper scaling
range, Eq. (17) gives a perfect approximation of the over-
all atomization size distribution as long as we take a large
enough number ofg.

6. Conclusions

We have introduced a new concept, thegeneration, to
describe an atomization process. Both simulations and ex-
periments show that the droplet size distribution occurring
in a nozzle atomization process has the fractal characteris-
tics in the proper scaling range, which is represented byDs
at the larger scale andDt at the small scale. Atomization

processes can be modeled by the growth of droplets at a
probabilistically uniform distribution. We have proved that
all droplets at different generations have the same structural
fractal dimension if and only if the generation number is
large enough based on the results of simulations and exper-
iments.

A so-called critical fractal dimension, whose value is 3,
is discovered to specify whether the atomization process is
an aggregation process or a break-up process and to dis-
tinguish between the structural and textural fractal dimen-
sions. Moreover, a recursion formula of the droplet number
between the different generations is obtained.

It is necessary to point out that the physical and math-
ematical models can also be applied to other growth pro-
cesses such as the fracture of rock. It is, however, necessary
to verify the trueness of Eq. (4) by experiments.
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